

# Présentation du logiciel

# INTRODUCTION



JASP est présenté par ses auteurs comme une solution conviviale facilitant l'accès à l'approche bayésienne. Il propose une interface graphique donnant accès à de très nombreux tests classiques, statistiques descriptives, graphiques, test t, ANOVA, ANCOVA, tables de contingence, corrélations, régressions, etc. mais aussi à beaucoup d'analyses plus complexes comme l'apprentissage machine, les séries temporelles, les données de survie, et divers outils adaptés aux statistiques bayésiennes.

Pour beaucoup des tests courants JASP propose une alternative Bayésienne de telle sorte qu'elle soit facilement compréhensible par des utilisateurs non familiarisés à cette approche.

JASP est un logiciel libre pouvant fonctionner sous Windows, Mac ou certaines plateformes de Linux. Les calculs utilisent les bibliothèques du logiciel R mais il est inutile d'avoir installé R sur votre disque dur. La langue utilisée par l'interface est choisie par l'utilisateur ; les traductions françaises sont encore incomplètes. Pour cette présentation nous utilisons la version 0.18.3 de janvier 2024.

### INSTALLATION

Le fichier exécutable d'installation peut être chargé depuis le site <u>https://jasp-stats.org/download/</u> Ce fichier étant volumineux son téléchargement peut prendre du temps selon la qualité de votre connexion.



# L'INTERFACE

A son lancement, l'interface de JASP ressemble à celle-ci-dessous.





# **IMPORTATION DES DONNÉES**

Les données peuvent être importées depuis des fichiers csv, txt, LibreOffice et bien d'autres.

La première ligne doit comporter les noms des variables.

| JASP     New Data        | Sta | tistiques descriptives | Te | ests t    | ANOVA                       | Modèles mixtes | Régression | Fréquences | Facteur |
|--------------------------|-----|------------------------|----|-----------|-----------------------------|----------------|------------|------------|---------|
| Ouvrir                   | ×   | Fichiers Récents       |    | Dossiers  | récents                     |                |            |            |         |
| Enregistrer              |     | Ordinateur             |    | Parcourir | -                           |                |            |            |         |
| Enregistrer Sous         | Þ   | OSF                    |    |           | ocuments<br>:\Users\Gilles\ |                |            |            |         |
| Exporter les résultats   | Þ   |                        |    |           | esktop<br>\Users\Gilles\    |                |            |            |         |
| Exporter les Données     | Þ   | Base de données 🕨      |    |           |                             |                |            |            |         |
| Synchroniser les Données | Þ   | Bibliothèque           |    |           |                             |                |            |            |         |
| Fermer                   |     |                        |    |           |                             |                |            |            |         |
| Préférences              | ►   |                        |    |           |                             |                |            |            |         |
| Contact                  |     |                        |    |           |                             |                |            |            |         |
| Community                |     |                        |    |           |                             |                |            |            |         |
| À propos                 |     |                        |    |           |                             |                |            |            |         |

Elles s'ouvrent alors dans le tableur de JASP.

Le type de données automatiquement détecté par le logiciel (quantitative ['échelle'], ordinal ou nominal) est indiqué par une icône colorée en face du nom de colonne. En cas d'erreur il peut être modifié par un double clic sur le nom de colonne. Cela permet aussi de modifier le nom de la variable.

| _    |                                  |                 |            |             |                         |   |            |
|------|----------------------------------|-----------------|------------|-------------|-------------------------|---|------------|
| ol 🕑 | bs (E:\anastats\Formations\JASP) |                 |            |             |                         |   |            |
| Ξ    | Edit Data Statistiqu             | es descriptives | Tests t AN | OVA Modèles | z v k                   |   | Fréquences |
|      |                                  |                 |            |             | , and the second second |   |            |
| T    | de ID                            | 📏 ann.es        | 📏 revenu   | Nourcent.F  | at.gorie                | + |            |
| 1    | ministers                        | 14.5            | 4686       | 4.14        | cadre                   |   |            |
| 2    | university.teachers              | 15.97           | 12480      | 19.59       | cadre                   |   |            |
| 3    | primary.school.teachers          | 13.62           | 5648       | 83.78       | cadre                   |   |            |
| 4    | secondary.school.teachers        | 15.08           | 8034       | 46.8        | cadre                   |   |            |
| 5    | physicians                       | 15.96           | 25308      | 10.56       | cadre                   |   |            |
| 6    | veterinarians                    | 15.94           | 14558      | 4.32        | cadre                   |   |            |
| 7    | osteopaths.chiropractors         | 14.71           | 17498      | 6.91        | cadre                   |   |            |
| 8    | nurses                           | 12.46           | 4614       | 96.12       | cadre                   |   |            |
| 9    | nursing.aides                    | 9.45            | 3485       | 76.14       | colBleu                 |   |            |
| 10   | physio.therapsts                 | 13.62           | 5092       | 82.66       | cadre                   |   |            |
| 11   | pharmacists                      | 15.21           | 10432      | 24.71       | cadre                   |   |            |
| 12   | medical.technicians              | 12.79           | 5180       | 76.04       | colBlanc                |   |            |
| 13   | commercial.artists               | 11.09           | 6197       | 21.03       | cadre                   |   |            |
| 14   | radio.tv.announcers              | 12.71           | 7562       | 11.15       | colBlanc                | ] |            |
|      |                                  |                 |            |             |                         | 1 |            |

# EXEMPLE (ANOVA)

Nous avons importé un petit fichier de 40 lignes, la première colonne est un identifiant par profession, puis le nombre d'années d'études, revenu, le pourcentage de le femmes dans la profession et la catégorie socioprofessionnelle 3 (CSP) en catégories. Nous ANOVA réalisons des une pourcentages de femmes selon les CSP.



Le module ANOVA propose le choix entre des méthodes fréquentistes (*'classique'*) et bayésiennes. La fenêtre de l'ANOVA qui s'ouvre permet de choisir les variables. Dans le haut à droite de la fenêtre une petite série d'icônes colorées permettent différentes options.

Des listes déroulantes permettent ensuite de choisir les paramètres d'analyse et de présentation des résultats.

Dans le bas de la liste (non visible sur cette image) l'approche nonparamétrique est proposée. L'analyse est réalisée dès que les choix sont faits. Les résultats sont aussitôt affichés dans une fenêtre à droite et mis à jour à chaque modification de paramètres demandée.



#### Résultats de l'ANOVA

#### Pourcentage de Femmes selon CSV 🔻

#### ANOVA - pourcent.F

| Cas                                | Somme des carrés | dl | Moyenne des carrés | F     | р     | η²    |
|------------------------------------|------------------|----|--------------------|-------|-------|-------|
| cat.gorie                          | 5607.159         | 2  | 2803.580           | 2.670 | 0.083 | 0.129 |
| Residuals                          | 37803.455        | 36 | 1050.096           |       |       |       |
| Note. Somme des carrés de type III |                  |    |                    |       |       |       |

#### Statistiques descriptives 🔻

#### Descriptives - pourcent.F

| cat.gorie | Ν  | Moyenne | ET     | ES     | Coefficient de variation |
|-----------|----|---------|--------|--------|--------------------------|
| cadre     | 11 | 36.420  | 35.103 | 10.584 | 0.964                    |
| colBlanc  | 14 | 58.016  | 35.054 | 9.369  | 0.604                    |
| colBleu   | 14 | 31.059  | 27.043 | 7.227  | 0.871                    |

#### Graphiques descriptifs 🔻



#### Test de Kruskal-Wallis

| 1 | Test de Kruskal-Wallis |              |    |       |  |  |
|---|------------------------|--------------|----|-------|--|--|
| l | Facteur                | Statistiques | dl | р     |  |  |
| ļ | cat.gorie              | 4.586        | 2  | 0.101 |  |  |

| Squences     Facteur     Apprentissage Machine   Power |                             |
|--------------------------------------------------------|-----------------------------|
|                                                        | Acceptanee Sampling         |
| Un clic sur la petite croix bleue située en haut à 🦟   | Audit                       |
| droite de l'écran donne accès à de très nombreux       | Bain                        |
| autres modules de calculs (liste incomplète sur        | BSTS                        |
| cette image).                                          | Statistiques circulaires    |
|                                                        | Méta-analyses de Cochrane   |
|                                                        | Distributions               |
|                                                        | T-tests d'équivalence       |
|                                                        | JAGS                        |
|                                                        | Apprentissage Bayésien      |
|                                                        | Learn Stats                 |
|                                                        | Apprentissage Machine       |
|                                                        | Méta-analyse                |
|                                                        | Réseau                      |
|                                                        | Power                       |
|                                                        | Predictive Analytics (beta) |
|                                                        | Process (beta)              |
|                                                        | Prophet                     |
|                                                        | Contrôle de qualité         |

# CALCULS DE PUISSANCE OU D'EFFECTIFS NÉCESSAIRES

#### 🕖 Aide JASP

#### **Power Analysis**

The module "Power Analysis" allows you to conduct analyses of statistical power. In statistics, power refers to the 'ability of a test to detect an effect of a particular size' (Field et al., 2012). The module allows you to compute (1) the necessary sample size to achieve a given power, (2) the power of detecting a particular effect, given a set sample size and (3) the minimum effect size, that could be detected with a given power and sample size.

This module is based upon jpower by Richard Moorey.

#### Input

 Statistical Test: The statistical test for which to conduct the power analysis.

#### Parameters (t-tests)

- I want to calculate the ...
  - Sample Size N: Calculate the necessary sample size to achieve a given power.
  - Power: Calculate the power of detecting a particular effect, given a set sample size and effect size.
  - Effect size: Calculate the minimum effect size, that could be detected with a given power and sample size.
- Minimal effect size of interest (δ): The minimal effect size using Cohen's d, that would be interesting to detect.
- Minimum desired power (1-β): The minimum desired probability of detecting an effect (statistical power). β refers to the probability of conducting a Type I error (false negative), therefore power is defined as the opposite i.e. 1β.
- Sample size / Sample size per group (N): The given sample size.
- Sample size ratio (N<sub>1</sub>/N<sub>2</sub>): Ratio between first and second groups sample size (independent samples t-test only).
- Type I error rate (α): The Type I error rate (false positive) threshold which will be used when running tests later.
- Alternative Hypothesis: Whether a one-sided or two-sided hypothesis will be tested.

#### Display

|   |      | •   | Power contour plot: Include a power contour plot in results?<br>(see Output for detailed explanation) |   |
|---|------|-----|-------------------------------------------------------------------------------------------------------|---|
| 4 |      |     |                                                                                                       | Þ |
| R | lech | ner | cher:                                                                                                 |   |

| Power                                                |                                  | 00        |
|------------------------------------------------------|----------------------------------|-----------|
| Statistical test: Independent S                      | mples T-Test 🔻                   |           |
| <ul> <li>Parameters</li> </ul>                       |                                  |           |
| want to calculate the                                | Sample Size N 🔻                  |           |
| Minimal effect size of interest:                     | δ  0.7                           |           |
| Minimal desired power:                               | 1-β) 0.8                         |           |
| Type I error rate:                                   | 0.05                             |           |
| Sample size per group:                               | N 20                             |           |
| Sample size ratio:                                   | N1/N2 1                          |           |
| Alternative Hypothesis:                              | H₁ Two-sided ▼                   |           |
| ▼ Plots                                              |                                  |           |
| Power contour plot                                   | Power demonstration              |           |
| Power curve by effect size                           | Power curve by N                 |           |
| <ul> <li>Explanatory text</li> </ul>                 |                                  |           |
| Data Generation                                      |                                  |           |
| Parameters Effect direction                          | Export synthetic dataset         |           |
| $\overline{X}_2$ 0 $\overline{X}_1 < \overline{X}_2$ | Save as e.g., location/power.csv | Parcourir |
| s1 1 $\overline{x}_1 > \overline{x}_2$<br>s2 1       | Save generated dataset           |           |
| Répétabilité Mettre la graine : 1                    |                                  |           |

#### Power

A Priori Power Analysis

|    |    | User Defined |       |       |  |  |
|----|----|--------------|-------|-------|--|--|
| N1 | Nz | Cohen's  õ   | Power | α     |  |  |
| 34 | 34 | 0.700        | 0.800 | 0.050 |  |  |

Note. Due to the rounding of the sample size, the actual power can deviate from the target power. Actual power: 0.812

We would need a sample size of 34 in each group to reliably (with probability greater than or equal to 0.8) detect an effect size of  $|\delta| \ge 0.7$ , assuming a two-sided criterion for detection that allows for a maximum Type I error rate of  $\alpha$ =0.05.

To evaluate the design specified in the table, we can consider how sensitive it is to true effects of increasing sizes; that is, are we likely to correctly conclude that  $|\delta| > 0$  when the effect size is large enough to care about?

#### Power by Effect Size

| True effect size    | Power to detect | Description            |
|---------------------|-----------------|------------------------|
| 0 <  δ  ≤ 0.482     | ≤50%            | Likely miss            |
| 0.482 <  δ  ≤ 0.690 | 50% - 80%       | Good chance of missing |
| 0.690 <  δ  ≤ 0.887 | 80% - 95%       | Probably detect        |
| δ  ≥ 0.887          | ≥95%            | Almost surely detect   |

#### **Power Contour**



# L'APPROCHE BAYÉSIENNE DANS JASP



De nombreux modules de JASP proposent le choix entre approche fréquentiste (*classique*) et approche bayésienne pour beaucoup de tests courants. En outre un module spécifique propose une familiarisation aux approches bayésiennes avec des tests simples et un texte d'accompagnement.





Pour chaque analyse choisie on trouve en haut et à droite de la fenêtre une icône **()** qui donne accès à une aide adaptée.

Au-delà des aides spécifiques lors de l'exécution de chaque analyse, le site Web de JASP fournit un support très complet. <u>https://jasp-stats.org/support/</u>

On pourra par exemple y trouver des guides pour l'utilisation des différents modules, soit sous forme de documents (*Blog Post*), de vidéo ou d'animations Gif montrant les enchainements d'actions à effectuer pour les analyses.

En outre divers matériels sont disponibles pour des formations sous forme de vidéos, de documents ou de manuels, par exemple pour l'initiation aux inférences bayésiennes.

# FEATURESSUPPORTGetting StartedHow to Use JASPFAQForumWorkshopsJASP MaterialsFeature Requests & Bug<br/>ReportsGuideline for JASP<br/>Translators

| SUPPORT             | I     | TEACHING |  |  |
|---------------------|-------|----------|--|--|
| Online Data Library |       |          |  |  |
| Resources           |       |          |  |  |
| JASP Arou           | ind t | he World |  |  |

Team

#### How to Use JASP



#### Frequentist Analyses

|                    | Blog Post | Video | GIF      |
|--------------------|-----------|-------|----------|
| ANCOVA             | _         | _     |          |
| ANOVA              | _         | _     |          |
| Binomial Test      | -         | -     | -        |
| Bland-Altman Plots | _         | _     | <b>a</b> |
|                    |           |       |          |

Your First Steps Using JASP

more information

of the different features in JASP.

The introductory video on the left should give you a good idea of

how JASP works. You can consult our Getting Started Guide for

Take a look at our How to Use JASP page for in-depth explanations

#### **Bayesian Analyses**

|                        | Blog Post | Video | GIF      |
|------------------------|-----------|-------|----------|
| A/B Test               | J         | -     | -        |
| ANCOVA                 | -         | -     | -        |
| ANOVA                  | J         | _     |          |
| Bayesian Meta-Analysis | J         | -     | a l      |
| Bayesian Z-test        | -         | -     | a l      |
| Binomial Test          | J.        |       | <b>a</b> |
|                        |           |       |          |



# BILAN



Ce logiciel libre est remarquable par bien des aspects :

- il propose une très grande diversité de tests et d'analyses de données,
- utilisant les bibliothèques du logiciel R les calculs sont particulièrement fiables,
- l'approche bayésienne y est particulièrement développée,
- les aides proposées lors de l'exécution de chaque module sont bien détaillées,
- des aides complémentaires en ligne et des outils de formation complètent ces supports,
- son interface graphique est d'un accès simple et intuitif.

Nous ne pouvons que recommander son utilisation à des personnes désireuses de pratiquer des statistiques sans utiliser directement R... ou ayant un peu oublié la syntaxe des commandes !

AnaStats – Avril 2024